17 Again Headphones in Ice Cream Shpp
Introduction
The FA20D engine was a 2.0-litre horizontally-opposed (or 'boxer') four-cylinder petrol engine that was manufactured at Subaru'southward engine plant in Ota, Gunma. The FA20D engine was introduced in the Subaru BRZ and Toyota ZN6 86; for the latter, Toyota initially referred to it every bit the 4U-GSE before adopting the FA20 name.
Key features of the FA20D engine included it:
- Open up deck pattern (i.east. the space between the cylinder bores at the top of the cylinder block was open);
- Aluminium alloy block and cylinder head;
- Double overhead camshafts;
- Four valves per cylinder with variable inlet and frazzle valve timing;
- Direct and port fuel injection systems;
- Pinch ratio of 12.5:ane; and,
- 7450 rpm redline.
FA20D block
The FA20D engine had an aluminium alloy cake with 86.0 mm bores and an 86.0 mm stroke for a capacity of 1998 cc. Within the cylinder bores, the FA20D engine had cast iron liners.
Cylinder caput: camshaft and valves
The FA20D engine had an aluminium alloy cylinder head with chain-driven double overhead camshafts. The 4 valves per cylinder – two intake and two frazzle – were actuated past roller rocker arms which had built-in needle bearings that reduced the friction that occurred betwixt the camshafts and the roller rocker arms (which actuated the valves). The hydraulic lash adjuster – located at the fulcrum of the roller rocker arm – consisted primarily of a plunger, plunger spring, check ball and check ball spring. Through the apply of oil pressure level and spring forcefulness, the lash adjuster maintained a constant aught valve clearance.
Valve timing: D-AVCS
To optimise valve overlap and utilise exhaust pulsation to heighten cylinder filling at high engine speeds, the FA20D engine had variable intake and exhaust valve timing, known as Subaru's 'Dual Active Valve Control System' (D-AVCS).
For the FA20D engine, the intake camshaft had a lx degree range of adjustment (relative to crankshaft bending), while the frazzle camshaft had a 54 degree range. For the FA20D engine,
- Valve overlap ranged from -33 degrees to 89 degrees (a range of 122 degrees);
- Intake duration was 255 degrees; and,
- Frazzle duration was 252 degrees.
The camshaft timing gear assembly independent advance and retard oil passages, likewise as a detent oil passage to brand intermediate locking possible. Furthermore, a thin cam timing oil control valve assembly was installed on the front surface side of the timing chain cover to make the variable valve timing mechanism more compact. The cam timing oil command valve assembly operated according to signals from the ECM, controlling the position of the spool valve and supplying engine oil to the advance hydraulic sleeping room or retard hydraulic chamber of the camshaft timing gear assembly.
To change cam timing, the spool valve would be activated past the cam timing oil control valve associates via a signal from the ECM and motility to either the correct (to advance timing) or the left (to retard timing). Hydraulic force per unit area in the accelerate bedroom from negative or positive cam torque (for accelerate or retard, respectively) would apply pressure to the advance/retard hydraulic chamber through the accelerate/retard check valve. The rotor vane, which was coupled with the camshaft, would then rotate in the advance/retard direction against the rotation of the camshaft timing gear assembly – which was driven by the timing chain – and advance/retard valve timing. Pressed by hydraulic pressure from the oil pump, the detent oil passage would become blocked so that it did not operate.
When the engine was stopped, the spool valve was put into an intermediate locking position on the intake side by leap power, and maximum advance state on the exhaust side, to prepare for the next activation.
Intake and throttle
The intake system for the Toyota ZN6 86 and Subaru Z1 BRZ included a 'sound creator', damper and a thin rubber tube to transmit intake pulsations to the motel. When the intake pulsations reached the sound creator, the damper resonated at certain frequencies. According to Toyota, this design enhanced the engine consecration racket heard in the cabin, producing a 'linear intake sound' in response to throttle application.
In contrast to a conventional throttle which used accelerator pedal attempt to determine throttle angle, the FA20D engine had electronic throttle control which used the ECM to calculate the optimal throttle valve bending and a throttle control motor to control the angle. Furthermore, the electronically controlled throttle regulated idle speed, traction control, stability command and cruise command functions.
Port and straight injection
The FA20D engine had:
- A directly injection system which included a high-pressure fuel pump, fuel delivery pipe and fuel injector associates; and,
- A port injection system which consisted of a fuel suction tube with pump and gauge associates, fuel pipe sub-assembly and fuel injector assembly.
Based on inputs from sensors, the ECM controlled the injection volume and timing of each type of fuel injector, according to engine load and engine speed, to optimise the fuel:air mixture for engine conditions. According to Toyota, port and direct injection increased performance across the revolution range compared with a port-merely injection engine, increasing power by upward to 10 kW and torque by up to 20 Nm.
Every bit per the table below, the injection system had the following operating conditions:
- Cold offset: the port injectors provided a homogeneous air:fuel mixture in the combustion chamber, though the mixture effectually the spark plugs was stratified by pinch stroke injection from the direct injectors. Furthermore, ignition timing was retarded to raise exhaust gas temperatures so that the catalytic converter could reach operating temperature more apace;
- Low engine speeds: port injection and direct injection for a homogenous air:fuel mixture to stabilise combustion, improve fuel efficiency and reduce emissions;
- Medium engine speeds and loads: directly injection only to utilize the cooling event of the fuel evaporating equally it entered the combustion sleeping room to increase intake air volume and charging efficiency; and,
- High engine speeds and loads: port injection and direct injection for high fuel flow book.
The FA20D engine used a hot-wire, slot-in blazon air flow meter to measure intake mass – this meter allowed a portion of intake air to menstruum through the detection area so that the air mass and period rate could be measured directly. The mass air flow meter also had a congenital-in intake air temperature sensor.
The FA20D engine had a compression ratio of 12.5:1.
Ignition
The FA20D engine had a direct ignition system whereby an ignition coil with an integrated igniter was used for each cylinder. The spark plug caps, which provided contact to the spark plugs, were integrated with the ignition curl assembly.
The FA20D engine had long-accomplish, iridium-tipped spark plugs which enabled the thickness of the cylinder head sub-assembly that received the spark plugs to exist increased. Furthermore, the water jacket could be extended near the combustion sleeping accommodation to enhance cooling functioning. The triple ground electrode type iridium-tipped spark plugs had 60,000 mile (96,000 km) maintenance intervals.
The FA20D engine had flat type knock control sensors (non-resonant type) attached to the left and right cylinder blocks.
Frazzle and emissions
The FA20D engine had a iv-2-1 exhaust manifold and dual tailpipe outlets. To reduce emissions, the FA20D engine had a returnless fuel system with evaporative emissions control that prevented fuel vapours created in the fuel tank from being released into the atmosphere by catching them in an activated charcoal canister.
Uneven idle and stalling
For the Subaru BRZ and Toyota 86, in that location take been reports of
- varying idle speed;
- rough idling;
- shuddering; or,
- stalling
that were accompanied by
- the 'check engine' light illuminating; and,
- the ECU issuing fault codes P0016, P0017, P0018 and P0019.
Initially, Subaru and Toyota attributed these symptoms to the VVT-i/AVCS controllers not meeting manufacturing tolerances which caused the ECU to notice an abnormality in the cam actuator duty bike and restrict the operation of the controller. To fix, Subaru and Toyota adult new software mapping that relaxed the ECU'southward tolerances and the VVT-i/AVCS controllers were subsequently manufactured to a 'tighter specification'.
There have been cases, still, where the vehicle has stalled when coming to residue and the ECU has issued error codes P0016 or P0017 – these symptoms have been attributed to a faulty cam sprocket which could cause oil pressure loss. Equally a consequence, the hydraulically-controlled camshaft could not respond to ECU signals. If this occurred, the cam sprocket needed to exist replaced.
Source: http://www.australiancar.reviews/Subaru_FA20D_Engine.php
0 Response to "17 Again Headphones in Ice Cream Shpp"
Post a Comment